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EXISTENCE OF THREE SOLUTIONS FOR EQUATIONS
OF p(z)-LAPLACE TYPE

SEUNG DAE LEE AND YUN-HO KIM*

ABSTRACT. We are concerned with the following elliptic equations with
variable exponents
—div(e(x, Vu)) = Af(x,u) + Mg(z,u) in Q,

which is subject to Dirichlet boundary condition. The purpose of this
paper is to establish the existence of at least three solutions for the
problem above by using as the main tool a variational principle due
to Ricceri. In addition, we give information on size and location of an
interval of A’s for which the given problem has either only the trivial
solution or at least two nontrivial solutions.
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1. INTRODUCTION

In this paper, we consider the nonlinear elliptic equations of the p(x)-
Laplace type

(Bxo) {_div("”(mv Vu)) = M (z,u) + Mg(z,u)  inQ

u=20 on 01,

where the function ¢(z,v) is of type |v|f @)=24 with a continuous function
p:Q — (1,+0), f,g: QxR — R are Carathéodory functions, and A, @
are real parameters. The main interest in studying such problems arises
from the presence of the p(z)-Laplace type operator div(e(z,Vu)). We
remember that the p(x)-Laplacian operator is defined by div(|Vu|? (2)-2 Vu).
The investigations for the p(z)-Laplace type problems have been widely
studied by many researchers in various approaches; see [1, 12, 16, 17, 18, 19|
and references therein.

Recently, Ricceri’s critical point theorem [22] has been applied with suc-
cess in several problems involving differential equations of variational type;
see [1, 5, 17] and references therein. Liu and Shi [17] studied the existence
of three solutions for a class of quasilinear elliptic systems involving the
(p(x), q(z))-Laplacian with Dirichlet boundary condition. The author in [1]
obtained some existence and multiplicity results for nonlinear elliptic equa-
tions of the p(x)-Laplace operator in the whole space RY. The first aim of
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this paper is to establish the existence of at least three solutions for problem
(Ba,g) by using as the main tool a variational principle due to Ricceri [22].

We point out that three-critical-points theorems introduced by Ricceri
[21, 22] gave no further information on the size and location of a three
critical points interval. However, the authors in [5] localized the interval
for the existence of three solutions for homogeneous Dirichlet problem and
inhomogeneous nonlinear Robin problem associated to the p-Laplace type
operators which was motivated by the study of Arcoya and Carmona [2]. In
particular, under suitable assumptions, to obtain the three critical points
interval for the given problem in [5], they consider the first eigenvalue A; of
the p-Laplacian eigenvalue problem

—div(|Vul/ 2 Vu) = Aa(2) [uf 2w inQ
u=20 on 0,

that is, A\; is defined by the Rayleigh quotient

VulP d
M= me el
weW () uzo Jo a(z) [ul” da

The positivity of A1 plays a decisive role in determining the three critical
points interval in [5]. In contrast with the p-Laplacian eigenvalue problem,
the infimum of all eigenvalues for the p(z)-Laplacian might be zero; see [11].
To overcome this difficulty, under appropriate condition for the variable
exponent p(-), we give that the infimum of all eigenvalues for the p(x)-
Laplacian is positive. Using this fact, the second goal of this paper is to
determine precisely the intervals of X’s for which problem (B ) has only the
trivial solution and for which problem (B g) admits at least two nontrivial
solutions. To the best of our knowledge, the results on the localization of the
interval for the existence of three solutions to equations of the p(x)-Laplacian
are rare. This is novelty of the present paper.

To make a self-contained paper, we recall some definitions of the vari-
able exponent Lebesgue space LP()(Q) and the variable exponent Lebesgue-
Sobolev space W'P()(Q) which will be treated in the next section.

Set

Ci(Q) = {h FeDE I;lels%lh(l‘) > 1}.

For any h € C(Q), we define
hy =suph(z) and h_ = inf h(x).
z€Q e
For any p € C(Q), we introduce the variable exponent Lebesgue space
PO(Q) = {u : u is a measurable function, / |u(z)|P®) do < +oo} ,
Q
endowed with the Luxemburg norm

(z)
||u||m<‘>m)=mf{x>o:/ iy d:cgl}.
Q

The dual space of LPO () is LF'O)(Q), where 1/p(z) + 1/p/ (x) = 1.
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The variable exponent Sobolev space Wl’p(')(ﬂ) is defined by
WwirO) Q) = {u e IPO(Q) : |Vul € L”(')(Q)} ,
where the norm is
(1.1) lulwrro @) = lul oo @) + 1Vl oo @)

To illustrate the density of smooth functions in WLP(')(Q), we need a
definition of the log-Hélder continuity condition for the variable exponent
p, namely, a function p : Q — R is log-Holder continuous on € if there is a
constant Cj such that

Co

(1.2) Ip(x) = p(y)| < Tlogle — g

for every xz,y € Q with |z — y| < 1/2. As established in [6, 7], if Q is
a bounded domain with Lipschitz boundary and p satisfies the log-Hélder
continuity condition, then smooth functions are dense in variable exponent
Sobolev spaces.

This paper is organized as follows. We first state some preliminary lem-
mas and present some properties of the integral operators corresponding to
problem (Bj ). And then we will prove the existence of at least three so-
lutions for problem (Bj ) and localization of the intervals of A’s for which
problem (B) ) has only the trivial solution and for which problem (B, )
admits at least two nontrivial solutions.

2. PRELIMINARIES AND MAIN RESULTS

In this section, we briefly introduce some definitions and basic properties
of the variable exponent Lebesgue space LP()(€2) and the variable exponent
Lebesgue-Sobolev space WP() (). For a deeper treatment on these spaces,
we refer to [4, 6, 7, 8, 9, 10, 14].

Lemma 2.1. ([10]) The space LPO)(Q) is a separable, uniformly convex
Banach space, and its conjugate space is L¥'( )(Q) where 1/p(x)+1/p (z) = 1.
For any u € LPY)(Q) and v € LV O)(Q), we have

(/uvm{<( )>"ﬂmwmﬂﬂm%mUS2MhmmMWmem'
Lemma 2.2. ([10]) Denote
= / [ulP®) dz,  for all u € LPV)(Q).
Q

Then
(1) pw) > 1 (= L < 1) if and only if Julporgy > 1 (= 15 < 1),
respectively;
(2) if |ul o) > 1, then ||U||’£;< oy < ) < Julf g

(3) if lul oy ) <1, then lul7 < plu) < Hu"iﬂ')(ﬂ)'

Lemma 2.3. ([7]) Let g € L*®(Q) be such that 1 < p(z)q(z) < oo for almost
all z € Q. Ifu € LIO(Q) with u # 0, then

Lr()(Q)
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(1) Zf "u"Lp(.)q(.)(Q) > 1, then
"u"qLip(‘)Q(')(Q) < ‘u|q(m) "LPU(SZ) < HUH%Z(JQ(')(Q);
(2) if lul rerac) ) <1, then
||U||§(->q<-)(g) < \u|q(x) ||Lp<~>(sz) < Hu"q,;p(-)q(-)(fz)'
Lemma 2.4. ([6]) Letp € C(Q) satisfy the log-Holder continuity condition.
Foru € Wol’p(')(ﬂ), the p(-)-Poincaré inequality
"u"LF(‘)(Q) < C"VUHLP(~)(9)
holds, where the positive constant C' depends on p and €.

Lemma 2.5. ([10]) Let © C RY be an open, bounded set with Lipschitz
boundary and let p € C(Q) satisfy the log-Hélder continuity condition with
1 <p_ <psi<oo. If g€ L®(NQ) with g— > 1 satisfies

o(2) < p*(z) = {J\yﬁz},@—) z:fN > p(x),
oo if N <p(x),
then we have a continuous imbedding
WP () — LI0(Q)
and the imbedding is compact if %Ielsfz(p*(x) —q(z)) > 0.

In what follows, let p € C(Q) satisfy the log-Holder continuity condition
and let us define our basic space X := Wol P (')(Sl) with the norm

p(x)
||u||X:inf{/\>O:/ Vulz) d:cgl},
Q

A
which is equivalent to the norm (1.1) due to Lemma 2.4. Furthermore, (-, )
denotes the pairing of X and its dual X*.

Definition 2.6. We say that u € X is a weak solution of problem (B ) if

/ o(x,Vu) - Vode = /\/ flz,w)vdx + /\0/ g(z,u)vde
Q Q Q
forallv e X.

We assume that ¢ : Q x RV — RY is a continuous function with the
continuous derivative with respect to v of the mapping ®o : Q x RV —
R, &g = Pp(z,v), that is, p(z,v) = d%tl)o(:r,g). Suppose that ¢ and &g
satisfy the following assumptions: For p € C(Q) with 1 < p_ < py < o0,

(J1) the following equality

Po(z,0) =0
holds for almost all z € Q.
(J2) there is a nonnegative constant d such that
(@, v)| < dlo?)!

holds for almost all € Q and for all v € RY.
(J3) ®g(x,-) is strictly convex in RY for all z € (.



Existence of three solutions for equations of p(x)—Laplace type

(J4) the following relation
C*|v|p(1) < ()0(.'13,’0) ‘v < p+<I)0($,U)

holds for all z € Q and v € RY, where ¢, is a positive constant.
Let us define the functional ¢ : X — R by
D(u) = / Do(x, Vu) dz.
Q

Under assumptions (J1), (J2) and (J4), it follows from [16, Lemma 3.2
that the functional ® is well-defined on X, ® € C'(X,R) and its Gateaux
derivative is given by

(@ (u),v) = /Q o(z, Vu) - Vv da.

Next adopting an argument given in the proof of Theorem 4.1 of [15], we
give that the operator ' is a mapping of type (S ) which plays an important
role in obtaining main results.

Lemma 2.7. Assume that (J1)—(J4) hold. Then the functional ® : X — R
is conver and weakly lower semicontinuous on X. Moreover, the opera-
tor ® is a mapping of type (Si), i.e., if upy — u in X as n — oo and
lim sup,, o (®'(upn) — @' (u), up —u) <0, then u, — u in X as n — oo.

Proof. Assumption (J3) implies that the functional ® is convex and weakly
lower semicontinuous on X. Moreover, proceeding the analogous argument
as in the proof of Theorem 4.1 in [15], it is immediate that the operator @’
is a mapping of type (S+). O

Corollary 2.8. Assume that (J1)—(J4) hold. Then the operator ® : X —
X* is homeomorphism onto X*.

Proof. Tt is obvious that the operator ® is strictly monotone, coercive and
hemicontinuous on X. By the Browder-Minty theorem, the inverse operator
(®")~! exists; see Theorem 26.A in [24]. The proof of continuity of the inverse
operator ()71 is analogous to that in the case of a constant exponent and
hence omit it here. O

Before dealing with our main results, we need the following assumptions
on f and g. Let us put F(z,t) = fg f(x,s)ds and G(x,t) = fg g(z, s)ds.
Then we assume that

(H1) pe C. () and 1 < p_ < p. < p*(x) for all z € Q.

(F1) f:Q xR — R satisfies the Carathéodory condition and there exist

two nonnegative functions aj, by € L*(2) such that

|f(z,8)] < ay(z) + by (z)|s|H @1

for all (z,s) € Q x R, where 41 € C(Q) and (y1)+ <p_.
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(F2) There exist an element x; in , a real number s; and a positive
constant r1 so small that

/ F(x,|s1])dz >0 and F(z,t) >0
By (z1.71)

for almost all z € By(x1,r1) \ By(z1,071) with o € (0,1) and for
all 0 <t <|sy|, where By(z1,m1) ={z € Q: |z — x| <m} C Q.

(G1) g: 2 x R — R satisfies the Carathéodory condition and there exist
two nonnegative functions ag, by € L*(Q)) such that

lg(z, 5)| < as(z) + ba(z) |s|2@ !

for all (z,s) € Q x R, where 12 € C(92) and (y2)+ < p_.
Then we define the functionals ¥, H : X — R by

U(u) = 7/ F(z,u)dr and H(u)= 7/ G(z,u) dz.
Q Q
It is easy to check that ¥, H € C'(X,R) and these Gateaux derivatives are

(' (u),v) = 7/&2 fl@,u)vde and  (H'(u),v) = f/szg(m,u)vdx.
for any u,v € X; see [8].

Lemma 2.9. ([22]) Let X be a reflexive real Banach space; I C R an inter-
val; ® : X — R a sequentially weakly lower semicontinuous C'-functional
whose derivative admits a continuous inverse on X*; U : X — R a C'-
functional with compact derivative. In addition, the functional ® is bounded
on each bounded subset of X. Assume that

lim (®(u) + A¥(u)) = +oo

Julx o0

for all X € I and there exists p € R such that
(2.1)  sup inf (D(u) + AN(T(u) + p)) < inf sup (P(u) + A(¥(u)+ p)) .
AeT ueX ueX \cJ

Then there exist a nonempty open set A C I and a positive real number
R > 0 with the following property: for every A € A and every C'-functional
J 1 X — R with compact derivative, there exists 6 > 0 such that for each
0 €10, 9], the equation

O (u) + AV (u) +0J (u) =0
has at least three solutions in X whose norms are less than R.

Lemma 2.10. Assume that (J1), (J2), (J4), (H1), (F1), and (G1) hold.
Then

lim {®(u) + A (¥(u)+0H(u))} = +o0

Jull x—o0

for all X\, 6 € R.

Proof. For |u|x large enough and for all \, 6 € R, it follows from Lemmas
9.1, 2.2, 2.3, and 2.5 that

D (u) + A (V(u)+ 60H (u))
:/S2<I>0(a;,Vu)dxf/\/QF(a;,u)dmf)\H/QG(:C,u)da;



Existence of three solutions for equations of p(a:)—Laplace type 251

/|Vu|P ) dm—\)\|/ la1 ()] |u| dz — |)\|/ |b1 |u|71(x) da

ww/m wm:ww/ mmw”dx

B ;
nwbmnummmwmm—atwm@wwwmm

Al O
L P e e S P [ g ot

> C ul A Calanl ey fulx — A by Lol 25

= or X () (1) () Lq()(m

IALIO]

— [Al10] C2||a2"L°°(SZ) Julx — (’Y2) ||b2||L°°(sz)||U||L 12() ()

A C
e

Al6] C.
L el

C _
> Sl - MGl - i

— [Al10] C'2||a2||L°o(n Julx —

for some positive constants C1, Ca, C3 and C4. Since p— > (v1)+ and
p— > (72)+, we deduce that

lim {®(u) + X (¥(u)+0H(u))} = +o0

Jullx —o0

for all \,6 € R. O

The following lemma plays a key role in obtaining the remaining assump-
tion (2.1) of Lemma 2.9.

Lemma 2.11. ([20]) Let X be a nonempty set and ®, ¥ two real functionals
on X. Assume that there are p > 0 and wug, u; € X such that

‘I)(U,O) = f\I/(U,O) =0, <I>(u1) > W,
(2.2) sup —U(u) < p (—\P(ul)> .

wed—1((—o0,u)) P (u1)

Then, for each p satisfying

B V()
uE@’le(Ijm.u]) \I/(U) o= ( (I)(ul)> ’
one has
sup 1nf (P(u) + A(p + ¥(u))) < inf sup (O(u) + A(p + ¥(u))).
A>0 ueX ueX A>0

Employing Lemma 2.9 with Lemma 2.11, we establish the existence at
least three solutions for problem (B) g).

Theorem 2.12. Assume that (J1)—(J4), (H1), (F1)-(F2), and (G1) hold.
Moreover, assume that

(F3) limsup,_,q (eaabupxal ||F|(Z”(:>‘> < +oo, where k € C(Q) satisfies

P+ < k_ < k(z) < p*(x) for all x € Q.
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Then there exist a nonempty open set A C [0,400) and a positive real num-
ber R > 0 with the following property: for every A € A, there exists § > 0
such that for each 8 € [0, 8], problem (B g) has at least three solutions in X
whose norms are less then R.

Proof. Tt follows from Lemma 2.7 that the functional ® : X — R is sequen-
tially weakly lower semicontinuous C'-functional. Moreover, it is bounded
on each bounded subset of X. By Corollary 2.8, there exists a continuous
inverse operator (9’ )71 : X* = X. From Lemma 2.5, the modification of
the proof of Lemma 3.5 in [12] shows that the operator ¥’ : X — X* is
compact. From Lemma 2.10 with 8 = 0, we know that
lim (®(u) + A\¥(u)) = +o0
lulx —o0

for all u € X and for all A € R.

To show all assumptions in Lemma 2.9, we verify the assumption (2.1).
Let s1 # 0 be from (F2). For o € (0,1), define

0 if.’I?EQ\BN(wl,'I’l)

(2.3)  uy(z) =< |s1] if x € By(z1,071)

n(‘il—la) (r1— |z —x1|) ifze€ By(x1,m1)\ By(x1,07m1).

It is obvious that 0 < u,(z) < |s1| for all x € Q and u, € X. Moreover, the
fact that LP()(Q) < LP-(Q) implies
fur % = Vsl > Cs | [Vuol" do

Csls1/P~ (1 — o) n_
= 5|(11|_E‘)p_ )riv Pmwun >0

for a positive constant C5, where « is either p4 or p_ and wy is the volume
of By(0,1). Hence we have
W) = / F(z, |s1]) da
BN(m’l,G’r’l)

|51
+/ F(m,i(rl—kr—xﬂ) dx
Bn(z1,r1)\Bn(z1,071) ri(l—o)

> 0.

From condition (F3), there exist n € (0,1] and a positive constant Cg such
that

(2.4) F(z,s) < Cg|s"® < Cg|s|"
for almost all z € Q and for all s € [—n,n]. Consider two positive constants
M and M given by
Ie; (r)+ Ie; ()~
My = sup —(|S| +,|i| ) and My = sup —(|S| +L87| )
|s]>1 |5| n<|s|<1 |5|
for a positive constant C. Then it follows from (2.4) and (F1) that
F(z,s) < M |s|""



Existence of three solutions for equations of p(w)—Laplace type 253

for almost all z € Q and for all s € R, where M = max {Cg, My, M>}. Fix
a real number p such that 0 < p < 1. If pu satisfies (ci/p+) |ul% < p <1,
where ¢, is the positive constant from (J4), then we assert

(25) —T(u) = / Fla,u)dz < M/ lul* dz < Crlluls < Cap™
Q Q
for some positive constants C7 and Cs. Since k_ > p., the relation (2.5)
implies that
SUP oyt <0~ (W)

(2.6) lim
pn—0+ 1

=0.

Now we check all assumptions in Lemma 2.11. Let us fix a real number pg
such that

c . _ c
0<p<po < —min{Ju [, Juol, 1} < —,
P+ P+

where u, was defined in (2.3). By Lemmas 2.2, 2.5, and assumption (J4),
we have

@(ua):/ﬂég(x,Vu”)de/

0 P+

Cy C
= |V, [P de > ]inuan’;; > o >

for |us]x < 1 and

Bu) = [ Bl Vug)do > [ (00O do > Euglf > o >
Q Q P+ D+
for |us|x > 1. Relation (2.6) implies that

o v <5 (-50) < (-555).

- Py
2 Juft <

For any u € ®~1((—o0, y1]), it is immediate that ®(u) < p and then

& |VulP@ de < / Oo(x, Vu)dr < pu.
P+ Ja Q

Hence we deduce that

/ |VulP® dz < Zi,u < &MO <1
Q Cx Cx

By the inequality above and Lemma 2.2, we assert |u|x < 1. It follows that
&"u”gg < / Oo(x, Vu)dz < p.
D+ Q
Then we have that
7 ((—o0,p)) C {u eX: Tl < u}-
P+
This implies that

sup  —T(u) < sup WW“(%Z;)’

u€d~1((—o0,u)) ;—:‘rﬂuﬂgfgu

that is,

\I/(u”))
sup —U(u) < ( .
u€®—1((—o0,1) (u) < p P(us)
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Thus we can choose p > 0,up = 0, and u3 = u, such that relations ®(uy) >
i and (2.2) are satisfied. Also there exists a real number p such that
U(ugy)
sup —T(u)<p<p (— ) .

u€d—1((—oo,u]) (I)(UU)
Set I = [0,400). Due to Lemma 2.11, we obtain that
(®(u) + MNP (u) + p)) < inf sup (®(u) + M(T(u) + p)) .

ueX A>0

2 3 f
g ueX
Define the functional J : X — R by J = AH. Since it is clear that the
functional J is C'-functional with compact derivative, the functionals ®, ¥,
and J satisfy all assumptions of Lemma 2.9. This completes the proof. [

It is well known that Theorem 2.12 gives no further information on the
size and location of the open set A. Hence we localize the interval for
the existence of at least three solutions for problem (B) ) by applying the
three-critical-points theorem in [2]. To do this, we consider the following

eigenvalue problem
(B) —div(|Vulf® 2 Vu) = Am(z) [uff@ 20 in Q.
u=20 on 01,

The positivity of the infimum of all eigenvalues for problem (E) is impor-
tant to assert our main result. The proof of the following lemma is analogous
to that of Proposition 3.7 in [13].

Lemma 2.13. Assume that (H1) holds. Moreover, suppose that

(H2) m € L>®(Q) and m(z) > 0 for almost all z € Q.

Denote the quantity

p() g
2.7) M= nf delVulTde
ueX\{0} [ m(x) [ulP™ da

Then there is uy € X with [, m(x) lu1[P®) dz = 1 such that the infimum A,
in (2.7) will be attained and uy represents an eigenfunction for problem (E)
corresponding to A, that is, A is a positive eigenvalue of problem (E). In
particular,

)\*/ m(z) Juy '@ da < / |VulP@®) da
Q Q
for every u € X.

Proof. 1t follows from Lemmas 2.4, 2.5, and assumption (H2) that A, is a
positive number. Let us denote the functionals &, ¥ : X — R by

(i)(u):/ |VU|P(9¢) dx and \i/(u) =/m(:p) |u|p(.r) da
Q Q

for any v € X. Then it is easy to show that ® and ¥ are continuously
Gateaux differentiable, convex in X, and @'(0) = ¥'(0) = 0. From Lemma
2.7, ® is weakly lower semicontinuous on X. The convexity of ¥ implies
that ¥ is also weakly lower semicontinuous on X. Since any C'-functional
on X with compact derivative is sequentially weakly continuous on X, U
is sequentially weakly continuous on X; see Corollary 41.9 in [23]. It is
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clear that ® is coercive in X. By using contradiction argument, we assert
® is coercive in {u € X : W(u) < 1}. In conclusion, all the assumption of
Theorem 6.3.2 in [3] are fulfilled and so ), is achieved in {u € X : ¥(u) = 1}.
Namely, there exists an element u; € X with [, m(x) u1 [P da: = 1, which
realizes the infimum in (2.7) and represents an eigenfunction for problem
(E) corresponding to A,. This completes the proof. O

In the rest of this paper, we localize precisely the intervals of \’s for which
problem (B) y) has either only the trivial solution or at least two nontrivial
solutions. To do this, we assume that

(F4) limsup,_,, % < +00 uniformly for almost all z € €, where
& € CL(Q) with p(z) < & (v) < p*(x) for all z € Q.

(G2) limsupsHO%

& € CL(Q) with p(x) < &(x) < p*(w) for all x € Q.

< 400 uniformly for almost all z € ), where

Let us introduce two functions
infvE\Il*I(r) ®(v) - (I)(u)

2.8 = i
(2.8) xi(r) ue\Ilfllﬁfoo,r)) (u) —r )
inf,eqg-1() @(v) — P(u)
(2.9 o) = sp =
wEW=1((r,+00)) W(u) —r

for every r € (infyex ¥(u),sup,ex ¥(u)). Denote the crucial values

Cy = esssup M and C,; = esssup L‘gﬂl
s£0,0€Q m(x) |s|p(w)7 s£0,0€Q m(x) |s|p(x)7
Then the same arguments in [5] imply that C; and C, are well defined,
positive constants, and furthermore the following relations hold;
F(z, C G(x, C
(2.10) ess sup F@ o)l =L and esssup G 9l =2,
s£02e0 m(z) s p- s#02e0 m(z) [P p-
The next result represents the differentiable version of the Arcoya and
Carmona Theorem 3.10 in [2].

Lemma 2.14. Let &, U be two functionals on X such that weakly lower
semicontinuous and continuously Gateaux differentiable in X. Let U be
nonconstant and H be conlinuously Gateaux differentiable with compact de-
rivative H'. Let also ® : X — X* be a mapping of type (S+) and ¥’ be a
compact operator. Assume that there exist an interval I C R and a num-
ber T > 0 such that for every X € I and every 6 € [—7,7| the functional
Iig =@+ XY +0H) is coercive in X. If there exists

(2.11) r e (inf U(u), sup \I/(u)) such that  x1(r) < xa(r)
ueX ueX

and (x1(r), x2(r)) NI # 0, then for every compact interval [a,b] with [a,b] C
(x1(r), x2(r))NI, there exists v € (0,7) with |8] < ~ such that the functional
I ¢ admits at least three critical points for every A € [a,b].

By applying Lemma 2.14, we can obtain the following assertion.
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Theorem 2.15. Assume (J1)-(J4), (H1)-(H2), (F1)-(F2), (F4) and (G1)-
(G2) hold. Then we have

(i) for every 8 € R there exists £, = c.Ap—/p+(Cs +10|Cy) such that
problem (Byg) has only the trivial solution for all A € [0,4,), where
¢y 18 a positive constant from (J4) and A, is a positive real number
in (2.7).

(i) if furthermore f satisfies the following assumption
(F5) [ F(z,ui(x))dz > d/c,p— holds , where uy is the eigenfunction

corresponding to the principle eigenvalue of problem (E) satis-
fying [, m(x) |u1|p(x) dx =1 and d,c, > 0 are constants given
in (J2) and (J4), respectively,
then there exists T > 0 such that problem (B g) has at least two dis-
tinct nontrivial solutions for each compact interval [a,b] C (€*, ¢y,
where £* = x1(0) < ¢\, with £* > £, and for every X\ € [a,b] and
0e(—7,71).

Proof. Under assumptions (J1)—(J4), (H1), (F1)—(F2), and (G1), all of the

assumptions in Lemma 2.14 except the condition (2.11) are satisfied.
Now we prove the assertion (i). Let u € X be a nontrivial weak solution
of problem (B) ). Then it is clear that

/go(x,Vu)-Vvdac:/\/ f(x,u)vd:&—o—/\e/g(m,u)vd:r
Q Q Q

for all v € X. If we put v = u, then it follows from assumption (J4) and the
definitions of Cy and C4 that

c*)\*/ IVulP@ d g/\*/ o(x,Vu) - Vudz
Q Q

=X (/Q f(:r,u)ud:rJrﬁ/Qg(;r,u)udm)
sm( /{ 2 m(f(‘”i’“)m(w) ufP@ da

z) |u|p(f)—1

+9/ﬂ m(g(mi,u)m(x) JuP@ d:v)

@) Juf !

<AA(Cr + 6] cg)/ m(z) [ulP® da
Q
<NCy + |e|cg)/ |VulP® da
Q

p- Q

Thus if u is a nontrivial weak solution of problem (B} ), then necessarily
A >l = chp—[p+(Cy + 16| Cy), as claimed.
Next we show the assertion (ii). It is obvious that the crucial positive

number
_ @)

= x1(0) = inf
xa(0) uetlf—llﬁ—oo,o))( U (u)
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is well defined by assumption (F5). It follows from the definition of u; and
(F5) that

¢ = 1(0) = _‘D(U)) < %)

inf _
uE\Pll&—x,O))< \IJ(U) - \I/(ul)
_ fQ <I>0(:c,Vu1)dx < CsP— / d
Jo Flz,ur)de — d Jop(x)
Let u be in X with u # 0. From assumption (J4) and relation (2.10), we
obtain that
®(u) :fsz ®g(z, Vu) dx - ;—1 fQ IVulp(z) dz
)| [y F(z,u)de — e @ () |ufP® da

Y m(a)|ul?™)

IVui P da < e,

S ,f_iﬁz|vu|p(w) dx S C«P— Cx AP

T8 fom@) @ de T Crpe T (Cr +161Cops =

L.

Hence we have ¢* > (.. Now we claim that there exists a real number r
satisfying condition (2.11). For any u € U~!((—oc,0)), we deduce that

infyep-1(,) P(v) — (u)

xa(r) = uexllfli?(ffx,r)) U(u) —r
_ nfoeprn) 2(v) — 2(W) __ P(w)
- U(u)—r —r—U(u)
for all 7 € (¥(u),0). This implies that
O (u)

lims < -—=
RS )

for all u € ¥~!((—00,0)). Hence we have that

limsup x1(r) < x1(0) = £*.
r—0—

Now we show that there exists a positive real number M, such that
(2.12) |F(z,s)| < Mym(z)|s|*@

for almost all x € Q and for all s € R. First of all, it follows from (F1) and
(F4) that f(x,0) = 0 for almost all x € Q. In fact, if there exists A C Q,

: f(z, _
|A| > 0 such that |f(z,0)] > 0 for all z € A, then lims_,o % =00

for all x € A. This contradicts assumption (F4). Thus, we obtain that

|F(,5)]
m(z)\s|§1<z)
Let us denote

limsup,_,g < 00 uniformly almost all in Q2 by the L’Hopital rule.

M3z = lim sup M
s=0 m(z) |s|*®)

for almost all z € Q. Then there exists ¢ > 0 such that |F(z,s)| < (M3 +

Dm(z) |s|$® for almost all z € Q and for all s € R with |s| < 6. Next, let
s be fixed with |s| > 4. It follows from (2.10) that

[Fl,3)] < 2L o976 () s
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(P-4 4 gp+— (&)~
< Cr(o +90 )m
D
for almost all x € Q). Hence the relation (2.12) holds, where
Cf((gp—*(ﬁl)Jr 4 5P+*(§1)—) }

() |s[*+)

M, = max {Mg + 1,
P

This implies that
1

«P+

10 ()| g/ﬂ.M*m(x) [l de < s ul§, + 2o Mol oy lulk

for a positive constant Cg and for all u € X, where « is either p4 or p_ and
B is either (&1)+ or (§)—. If r < 0 and v € ¥~1(r), then it follows from
assumption (J4) that

p+r =pr¥(v)
1
> — ol — 2CoM.p-fml o<y lol %
B
p p «
> - 2 a) - 20 ep bl (Zo2(0))
D+ P+§+1 s
(2.13) = Y d(v) — QCQM*”TI’L"Loo(Q) p D(v)a.

Since u =0 € ¥~1((r, +0)), we assert

1
>— inf ®(v),
) > o it a(0)

and hence there exists u, € ¥~!((r, +00)) such that

d(u,) = inf P(v);
(U) UE\V*}&rd»oo)) (’U)

see Theorem 6.1.1 in [3]. According to inequality (2.13), we deduce that

B
pe < 2* o (ur) + Cfrat (‘D(“T)> ’

T | 7]
b+ A 21 8
(2.14) < Loxa(r) + C = (),

where a positive constant C' is denoted by
B8

~ p @
C =2Co M, |m| e (0 +c .

Then two possibilities are considered; either x2 is locally bounded at 0— so
that inequality (2.14) implies liminf, o x2(r) > ¢\« because 8 > « or
lim sup, _,o_ x2(r) = 0.

Since the functional Iy g := ®(u) + A (¥ (u)+ 0H(u)) is coercive for all
A0 € R, weset I = R. For all integers n > n* := 1 4+ 2/[ca e — £7],
there exists a negative sequence {r,} such that r, — 0 as n — oo with
x1(rn) < £+ 1/n < cuhe — 1/n < x2(ry). In conclusion, since u = 0 is a
critical point of I 4, according to Lemma 2.14, there exits 7 > 0 such that
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problem (B) 4) admit at least two distinct weak solutions for each compact
interval

@b € (¢ e = | [e*+%,c.m*—ﬂ c U Gal), xelra)

n=n n=n*

and for every \ € [a,b] and § € (—7, 7). This completes the proof. O
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